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Spherical Symmetry and Mass-Energy 
in Higher Dimensions 
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The components of the Einstein tensor and other relations are given for a spher- 
ically symmetric metric in null coordinates in higher dimensions. These relations 
are particularly relevant to the study of gravitational collapse of a perfect fluid 
with heat flow but without viscosity, where the exterior space cannot be consid- 
ered as vacuum and matching to Schwarzschild space-time is not suitable. The 
analysis generalizes to higher dimensions work of Cahill and McVittie in 4D 
space-time. Using the expression for the "mass function," it is observed that 
pressure vanishes at the boundary of the distribution for a perfect fluid in the 
higher-dimensional case also, but the same is not true when heat flow is 
considered. 

1. I N T R O D U C T I O N  

The pioneering work of  Oppenheimer  and Snyder (1939) over 50 years 
have greatly enhanced our  unders tanding of  the gravitational collapse o f  
any starlike spherical distribution o f  matter,  particularly at its late stage o f  
evolution. The situation analyzed by them is too simplistic in the sense that  
pressure, rotat ion,  radiation, asymmetries,  and other  impor tan t  quan tum 
effects are neglected. There  has been o f  late a resurgence o f  interest in models 
where the energy-momentum tensor contains heat flow and radiation in 
addit ion to a perfect fluid, because a nonstat ic  starlike object in general 
would be radiating energy and m a y  contain charges as welt (Shvartsman,  
1971). Fol lowing the detection o f  QSOs and other  extragalactic sources and 
their colossal energy requirements,  Hoyle and Fowler (1963) suggested a 
theory o f  hot, convective supermassive stars where general relativistic effects 
can no longer be neglected. The most  appropr ia te  metric for studying this 
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radiation is the one given by Bondi et al. (1962), where radiation coordinates 
are introduced. 

On the other hand, the long-time goal of a unification of gravity with 
other forces in nature continues to remain elusive in quantum field theory. 
Most recent efforts in this search have been directed at studying theories in 
which the dimension of the space-time is greater than the (3+ 1) of the 
world that we observe. Further, the advance of work on supergravity in 11 
dimensions and superstrings in 10 dimensions indicates that the multidimen- 
sionality of space is apparently a fairly adequate reflection of the dynamics 
of interaction over distances r<<  ]0 -~6 cm where the unification of all types 
of forces is possible (Witten, 1984). 

Recently there has been a proliferation of articles on higher-dimensional 
space time both in localized and cosmological domains (Myers and Perry, 
1986; Chatterjee, 1987; Banerjee et al., 1990; Chatterjee et al., 1990a) [also 
see Emelyanov et al. (1986) for an excellent review]. For a localized dis- 
tribution all the solutions so far obtained are arbitrary-dimensional gen- 
eralizations of the usual Schwarzschild or Kerr solutions. In a recent 
communication Liddle et al. (1990) studied the consequences of the extra 
dimensions on the structure of neutron stars and showed that the presence 
of the extra dimensions reduces the maximum mass of the star. The situation 
may, however, improve if a more realistic equation of state is considered. 
However, to our knowledge, nonstatic models of the same type have not 
been considered so far within the standard Einstein theory. So in view of 
the renewed interest in higher-dimensional theories as well as the need of 
taking into account radiation from localized bodies (particularly starlike 
objects in astrophysics), we have thought it worthwhile to give in detail the 
expressions for the Christoffel symbols, Riemann-Christoffel tensor, and 
components of Einstein's field equations in higher-dimensional radiating 
coordinates with the hope that they may be useful for those interested in 
this field. Then, following Cahilt and McVittie (1970), we obtain an expres- 
sion for the mass function in (n + 2) dimensions. With the help of the mass 
function we show that the fluid pressure on the boundary of the spherical 
distribution vanishes for an adiabatic flow, which, however, is not the case 
if the fluid contains a heat flow vector. We also get an expression for the 
effective mass when the energy-momentum tensor contains an electromag- 
netic field and discuss the possible observational consequences of higher 
dimensions on this result. 

2. MATHEMATICAL FORMULATION 

The spherically symmetric line element in null coordinates in D = (n + 2) 
dimensions is 

ds2=e2 ' [ (V / r )  du2 + 2 du dr] - R 2 dX]  (1) 
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where 

2 2 d X . = d 0 1  +s in  2 q~, dO~+" . - + s i n  2 0j sin 2 02 sin 2 0 sin 2 0 ._ ,  dO2. 

We have 

fl = fl(r, u), V= V(r, u), R = R(r, u) 

where u is the retarded time. 
Since this type o f  line element in higher dimensions has not  been, to 

our  knowledge, discussed in the literature, we give in some detail the expres- 
sions for the nonvanishing components  o f  the Christoffel symbol as also the 
Riemann-Chr is tof fe l  tensors in the hope that  these may  be useful for workers 
in this field. 

For  the line element (1) we get 

-e 2~ V / r  

e2B 

gob = 0 

0 

gab = I e-02/~ 

e 2p 0 0 " �9 "1 

] 0 0 0 - . "  

0 - R  2 0 . �9 �9 

0 0 - R  2sin 2 0 s i n  2~b . . .  

e -2B 0 0 

- ( V / r )  e -2e 0 0 

0 - 1 / R  2 0 

0 0 ( - R  2 sin 2 0 sin 2 ~b )- l  

oO.. ]oO 
(2) 

(3) 

The nonvanishing components  o f  Christoffel symbols are 

V ~  V/r  + V/2r  2 -  V , /2r  

g22Fo 2 33~0 nnrO _ _ e - 2 ~ R t / R  = g  133 . . . . .  g I n n - -  

F~o = - f lo  V / r +  fl, V2/r  2 + V, V/2r 2 - V2/2r 3 + Vo/ar 

Fj'I = 2p, 

r~, = ~, V/r + v , / 2 r -  v /2r  2 
g22 [,212 33~ 1 nn-- 1 -2~ ,  = g  133 . . . . .  g l . . = e  t V R 1 / r R - R o / R )  

r g  = r L  . . . . .  Co". = R o / R  

F22_ 3 , _  - F 1 3  . . . . .  F I . , - R t / R  
2 F33 = - s i n  0 cos 0 

F34 = - s i n  q~ cos ~b 

F~3 = cot 0 

F~4 = cot 0 

(4) 
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We give below the expressions of the Riemann-Christoffel tensors defined 
by 

i __ i i lmyl~i  r "  Y 1v'i Rjkt-- rj-t,~ - Fjk,t + (5) l j l l k y  - -  �9 j k t y l  

which are useful for the derivation of the field equations: 

R212~__  3 n __ R ,,3 . . . . .  R , , . -  R , , / R - 2 f l , R , / R  (6) 

2 2 n 0  3 3 n 0  n n n O  
g ~22o=g ~X33o . . . . .  g t~..o 

= e-2~(Rol/R-  VRl f l j /Rr+ VR1/2Rr 2 -  VIRI/2Rr) (7) 

Ro~ 2 f l o , - f l l , V / r - f l ,  V,/r+ fl, V/r2 + V,/r 2 -  V/r 3 -  V,,/2r (8) 

i __ Rio -  1 + 2RoR~ e -2B - e-2~R 21 V/r (9) 

( i=3,  4, 5 , . . .  , n ; j = 2 ,  3 , 4 , . . . ,  n) 

R~j2=R3j3 . . . . .  R~t. 

= R~o/ R -  VR,f l , /  R r -  V,R,/2rR + VRj/2Rr 2 (10) 

2 __ 3 __ n 
R oo2 - R oo3 . . . . .  R o0. 

= Roo/R + (Ro/R)( V , / 2 r -  V/Zr 2 + Vfll/r - 2flo) 

+(R, /R) (V f lo / r+  V2/2r 3 -  V2fl,/r 2 -  Vo/2r-  VVI/2, "2) (11) 

R / o l  = 2 f o  1 V / r -  f l l  V 2 / F 2 .  f31 V V I / F 2  ~- f31 V 2 / F 3  

q- V V , / r  3 - V 2 / r  4 - V V ,  ,/2r z (1 2) 

R ~21 = +e-2~( -RRol -  VRRif31/r- VRRI/2r 2 

+ RR1V~/2r + VRRll/r)  (1 3) 

RI, o, = 2 f o , -  Vf3 , , / r -  V, f3,/r+ Vf3,/r2 + V,/r 2 -  V/r 3 -  V,,/Zr (14) 

R ~o2 = e- 2Z ( RRoo- RRI Vo/2r - RRto V / r -  2f3oRRo + Vf3oRR,/r 

+ RRo VI/2r + RRo Vfl~/r - R Ro V/2r 2) ( 1 5) 

R 1o2 = Ro,/R - Vfl, R , / rR  - 111 R, /2rR + VR,/2Rr 2 (1 6) 

Here the subscripts 0 and 1 denote differentiation with respect to u and r, 
respectively. 



M a s s - E n e r g y  in H i g h e r  D i m e n s i o n s  675  

The components of the Einstein tensor can be found via 

I _ a f l D k  Gij= R~k - ~gi/g ~'~Zk (17) 

G [ = (n/2)g22[(n - 1 )R 332 + 2R ~ (18) 

a ~ =  633 . . . . .  a.", = (n - 1)g22(R~ R~ ,2+R323) -g~176  (19) 

0 22 I I 
G o = g  [nR212+ ~ n ( n -  1)R~32] (20) 

G ~ = g ~ G . o  = -ng22R ~2o2 (21) 

G~ = gOd Gj~ = -ng22 R ~ (22) 

Using the relations (6)-(16). we finally get 

G,, = n( R~ , /  R -  2/3,R f f  R) (23) 

Go, = �89 VR~ ~ / R r -  V R , / R r  2 + V ~ R , / R r -  2Ro, /  R -  2 VRI/3~/ Rr) 

+ [�89 - 1 ) /R  2]( VR~/r  - 2RoR, - e 2/3) (24) 

G22 = (n - l)  e-2t3[- VRR~N/r + 2RRo~ + (n - 2)RoRj + VRR~/r  2 

- RR,  VI /r  + (1 - n/2)  VR 2 / r -  (1 - n/2)  e 2~] 

+ e  2z(2/3o, R 2 -  V R 2 f l , , / r -  R2fl,  V , / r  + VR2/3, /r  2) 

+ e-2ZR 2( V l / r  2 - V/r  ~ - Vj I/2r) (25) 

Goo = nRoo/R + (nRo/R) (  V j / 2 r -  V/2r  2 + Vf l t / r  - 2/30) 

+ nRi flo V / r R  - n U2/31 R1/Rr 2 - nR~ Vo/2rR - 2n VRol / rR  

+ n VVT R I / 2 R r  2 -  n V 2 R j / 2 R r  3 + n VZR~I/r2R 

+ [n(n - 1) V/2rR  2]( VR ~ / r -  2RoRI - e 213) (26) 

3. MASS FUNCTION 

From the expressions derived in the last section we get 

i - -  R j i / -  1 + e-Z~(2RoR~ - VR ~/r) (27) 

Examination of this expression reveals that if R = r  and/3 =0. our line ele- 
ment reduces to 

ds 2 = (1 - R}u) du 2 + 2 du d r -  r 2 dX]  (28) 
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In a recent communication (Chatterjee et al., 1990b), we obtained an exterior 
solution for a charged radiating sphere in (n + 2) dimensions for the line 
element 

ds 2 = V du 2 + 2 du dr - r z d X  2 (29) 
r 

The energy-momentum tensor appropriate to this physical situation is given 
by 

T~b = p Uo G + E~  (30) 

where p is the density of radiation and Eab is the electromagnetic energy- 
momentum tensor. Since the lines of flow are null geodesics and the outflow 
of radiation is radial, 

U~U~=0; U3= U 4 rr,+2 . . . . .  ~ , + 2 = 0  (31) 

The Einstein-Maxwell equations via the use of the energy-momentum tensor 
given above yield the following form of the line element: 

ds 2 = [1 - 2 m ( u ) / ( n  - 1)r "- l  + q2/n(n - 1)r 2"-2] du 2 

+ 2 du d r -  r 2 d X ]  (32) 

When the electromagnetic field is switched off, the solution reduces to a form 
given recently by Iyer and Vishveshwara (t989) and further when n = 2 we 
get the well known Vaidya (1951) metric in the standard four dimensions. 
So our solution may be termed the electromagnetic generalization of the 
Vaidya solution in higher dimensions. 

Following Israel (1958) and Lichnerowicz (1955), it is obvious that 
the metric tensor must be continuous across the boundary of a spherical 
distribution of matter, such that comparing (28) and (32), we get, in the 
absence of an electromagnetic field~ 

i _ 2M(u) (33) 
(Rjil)b (n- -  1),~ -j 

where the evaluation is made at the boundary. We can, at this stage, follow 
the arguments of McVittie in defining in an ad hoc manner a mass function 
as 

m(u ,  r ) =  � 8 9  I )R"- ' [1  + 2RoRI e -2/3 - - ( V / r ) R  2 e -2a] 

= �89 1)R"- 'R~, (34) 

Because of the invariance of Rio and R, m is an invariant also. The function 
m may be tentatively interpreted as the total amount of mass-energy 
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entrapped between the center of distribution and the n-space of symmetry. 
Thus the expression (34) is the higher-dimensional generalization of previous 
formulations by McVittie et al. and also by Hernandez and Misner (1966) 
to the case when the energy-momentum tensor contains, in addition to a 
perfect fluid, a radiation. This explains why the mass function depends on 
the time coordinate u as well. 

Let us show now that the mass function is an integral of  Einstein's 
equations. To do that we take for simplicity i=  3 and j =  2. From the Bianchi 
identity 

where a is 1 or 0. 
With the identity 

3 +l~32a.3.+.R3ay2= 0 R 232 ;a , , (35) 

2 / / 3 F2jR202 = F22Rj~3 (36) 

equation (35) reduces to 
I 

m,, = ~ (n -  1)[(n-l)R"-2R332R.+2R"-'F~R~a21 (37) 

From the expression of the Christoffel symbols of our line element and from 
(18)-(22) we get from (37) 

n l  I - -  

ly/O - -  

Using the field equation 

(n -  1)R" ( GORo_ GoRI ) (38) 
n 

( n -  1)R" (G~R,- G{Ro) (39) 
n 

Gij = -T• (40) 

tYl l-  ( n -  1 )e  n (TON I _ TORo ) ( 4 1 )  

,n0-  (n- 1)R" (TIRo- T~R,) (42) 
n 

we obtain 

4. APPLICATIONS 

Case A. As an application of the expression of the mass function, let 
us assume that the higher-dimensional spherical ball contains an imperfect 
fluid with a heat flow in the radial directien but no viscous terms such that 
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the energy-momentum tensor can be written as 

Tj= (p + r) U'Uj-pgj  + q'U~ + qjU' (43) 

where U s= dx~/ds are the (n + 2)-dimensional velocities of the fluid such that 
for radial flow 

U 2= U 3= U 4 . . . . .  U"=O; UiUi =1 and qiUi=O; qiqi>O 

Two viewpoints exist about the nature of the energy-momentum tensor in 
higher dimensions. We hold the view that the pressure is isotropic in all the 
dimensions, including the extra ones (Shen and Tan, 1989), in contrast to the 
view that assumes that the pressure either vanishes in the extra dimensions or 
has a value which is different from that in the usual 4D space-time. 

As discussed earlier (Santos, 1985), the exterior metric that matches 
with this type of distribution is not the Schwarzschild metric, but the radiat- 
ing Vaidya form. It is well known that during the gravitational collapse of 
a star the temperature shoots up to such high values as to cause an intense 
production of neutrinos. In a pioneering work Misner (1965) studied a 
nonadiabatic sphere of fluid subject to gravitation which cools via an out- 
ward radiation of neutrinos in the radial direction. The neutrinos are neither 
scattered nor absorbed by the sphere and are represented by a null fluid. 
The physical picture was later improved upon by Griffiths (1973) and Trim 
and Wainwright (1971) invoking the concept of a Dirac field. 

Here we are not concerned with the physical situation. We use the 
expression of the mass function to enquire about a possible relationship 
between the pressure and the heat flow vector existing at the boundary of 
the spherical distribution. If the equation of the boundary is 

f (r ,  u) = 0 (44) 

then 

(df/d~)~ =f ,  v '  +fo v ~ = o (45) 

and 

( dm/  du)b = ( - m l  f o / f  l + mo)b (46) 

where m0 = (8m/fu), .  and ml = (&n/f ir) , .  
From (43) it follows that 

TOo = (p + p) U~ + q~ + qoU ~ 

Ttl = (p + p) U j Uj - p  + q~ U 1 AV ql U1 

(47) 

(48) 
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T~ = T 3 . . . . .  T; = - p  (49) 

T~o = ( p + p )  U' Uo + q' Uo + qoU ~ (50) 

T~ = (P +e) U~ U, + qO U, + q, U ~ (51) 

WJth the help of equations (41), (42), and (46) we get 

d..) (roRoyo_ foR, io + 
1)R~-_ I 

du/,, n(fOb 

= A[p(U, R o -  UoRl)(U~ + U % )  

+ p( U' R, + U~ U, fo - UoA ) 

+ ( U, Ro - UoR,)(q~ + q~J3)] (52) 

where A is a constant involving the terms outside the bracket. 
Invoking the Lichnerowiez continuity conditions, we find that since the 

mass function is an invariant and depends only on first derivatives, expres- 
sion (52) should be continuous across the boundary of the distribution. 

As mentioned earlier, the exterior energy-momentum tensor corre- 
sponding to a radiating sphere is given by 

Tob = p U~, Ub (53) 

where p is the density of radiation. Expression (46) reduces via equation 
(53) to 

-ffs Ro(U~ + U'f~)-pUoR,(U~ U'f,) (54) 

which, as a result of equation (46), vanishes. 
Thus equation (52) yields 

[p(U'R: + UCRo)(Uxfo - Uof~)+(U~Ro- UoR~)(q~ (55) 

For the adiabatic case we thus get the well-known result that pl, = 0. In 
fact equation (56) reestablishes an earlier result of deOliveira el al. (1986) 
that the isotropic pressure on the surface of discontinuity of a spherically 
symmetric collapsing gaseous distribution with radial heat flow cannot be 
zero. The pressure will vanish at the boundary only if the fluid is not dissipat- 
ing, that is, only if there is adiabatic collapse. 

Case B. Two viewpoints exist on the significance of extra dimensions 
for physical processes. Some (Scherk and Schwarz, 1975) regard it as a 
convenient way of building a complicated Lagrangian in four dimensions 
proceeding from the simple Lagrangian of gravitation theory in spaces with 
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D > 4. The physical meaning of  "extra" dimensions remains hidden in such 
an approach. According to another viewpoint, one postulates the reality of 
"extra" dimensions which form a compact manifold with the dimension 
lxx' , ,  10 -33 cm and are unobservable with available experimental facilities. 
Holding the second viewpoint that extra dimensions are not just a mathe- 
matical trick, in this section we utilize the mass function formalism to discuss 
the case of  a spherically symmetric distribution containing both radiation 
and an electromagnetic field. The exact solution of  the metric coefficients 
given by the present authors is discussed in Section 3. Identifying R = r and 
comparing (32) and (34), we see that the mass function is given by (R0 = 0 
and fl = 0 for the exterior) 

q2 
M(r ,  u) = m(u)  (56) 

2nr n- i 

when r =  ~ ,  M ( ~ ,  u) =re(u),  which means that m(u) is the total amount  of 
mass-energy between the center of  the distribution and infinity for constant 
u. This expression is very similar in form to that obtained by Cahill and 
McVittie with the essential difference that since we here consider a radiating 
case, the mass terms depend on time coordinate u also. Second, here also 
the mass function decreases with the decrease of  r, but the rate of decrease 
is much more prominent in the higher-dimensional formalism than in the 
usual 4D case. Further, a situation may arise when M becomes negative for 
a very small value of  r given by 

q2 
r"- 1 < _ _  (57) 

2nm(u) 

such that a small particle very near a point charge will be repelled. Here also 
the critical distance at which such a situation would occur depends on the 
number of  dimensions. Equation (56) is interesting in the sense that it is 
amenable to, in principle at least, observational consequences to check any 
supposed departure from the usual 4D spacetime. However, it is too pre- 
mature to come to any definite conclusion in this regard. 
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